Direct Sum of Rings
Given a finite family of rings R1, ..., Rn, the direct product of the Ri is sometimes called the direct sum.
Note that in the category of commutative rings, the direct sum is not the coproduct. Instead, the coproduct is the tensor product of rings.
Read more about this topic: Direct Sum
Famous quotes containing the words direct, sum and/or rings:
“An inexperienced heraldist resembles a medieval traveler who brings back from the East the faunal fantasies influenced by the domestic bestiary he possessed all along rather than by the results of direct zoological exploration.”
—Vladimir Nabokov (18991977)
“[M]y conception of liberty does not permit an individual citizen or a group of citizens to commit acts of depredation against nature in such a way as to harm their neighbors and especially to harm the future generations of Americans. If many years ago we had had the necessary knowledge, and especially the necessary willingness on the part of the Federal Government, we would have saved a sum, a sum of money which has cost the taxpayers of America two billion dollars.”
—Franklin D. Roosevelt (18821945)
“It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.”
—Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)