Direct Product of Modules
The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components. Starting from R we get Euclidean space Rn, the prototypical example of a real n-dimensional vector space. The direct product of Rm and Rn is Rm + n.
Note that a direct product for a finite index is identical to the direct sum . The direct sum and direct product differ only for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of Category Theory: the direct sum is the coproduct, while the direct product is the product.
For example, consider and, the infinite direct product and direct sum of the real numbers. Only sequences with a finite number of non-zero elements are in Y. For example, (1,0,0,0,...) is in Y but (1,1,1,1,...) is not. Both of these sequences are in the direct product X; in fact, Y is a proper subset of X (that is, Y⊂X).
Read more about this topic: Direct Product
Famous quotes containing the words direct and/or product:
“Traditionally in American society, men have been trained for both competition and teamwork through sports, while women have been reared to merge their welfare with that of the family, with fewer opportunities for either independence or other team identifications, and fewer challenges to direct competition. In effect, women have been circumscribed within that unit where the benefit of one is most easily believed to be the benefit of all.”
—Mary Catherine Bateson (b. 1939)
“Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.”
—William Hazlitt (17781830)