Direct Image Functor - Definition

Definition

Image functors for sheaves
direct image f
inverse image f
direct image with compact support f!
exceptional inverse image Rf!

Let f: XY be a continuous mapping of topological spaces, and Sh(–) the category of sheaves of abelian groups on a topological space. The direct image functor

sends a sheaf F on X to its direct image presheaf

which turns out be a sheaf on Y. This assignment is functorial, i.e. a morphism of sheaves φ: FG on X gives rise to a morphism of sheaves f(φ): f(F) → f(G) on Y.

Read more about this topic:  Direct Image Functor

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)