In mathematics, a Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given and any (measurable) set A ⊆ X by
where is the indicator function of .
The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X. We can also say that the measure is a single atom at x; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence. The Dirac measures are the extreme points of the convex set of probability measures on X.
The name is a back-formation from the Dirac delta function, considered as a Schwartz distribution, for example on the real line; measures can be taken to be a special kind of distribution. The identity
which, in the form
is often taken to be part of the definition of the "delta function", holds as a theorem of Lebesgue integration.
Read more about Dirac Measure: Properties of The Dirac Measure, General References
Famous quotes containing the word measure:
“Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.”
—Mary Barnett Gilson (1877?)