Measure of The Accuracy of Approximations
The obvious measure of the accuracy of a Diophantine approximation of a real number α by a rational number p/q is However, this quantity may always be made arbitrarily small by increasing the absolute values of p and q; thus the accuracy of the approximation is usually estimated by comparing this quantity to some function φ of the denominator q, typically a negative power of it.
For such a comparison, one may want upper bounds or lower bounds of the accuracy. A lower bound is typically described by a theorem like "for every element α of some subset of the real numbers and every rational number p/q, we have ". In some case, "every rational number" may be replaced by "all rational numbers except a finite number of them", which amounts to multiplying φ by some constant depending on α.
For upper bounds, one has to take into accounts that not all the "best" Diophantine approximations provided by the convergents may have the desired accuracy. Therefore the theorems take the form "for every element α of some subset of the real numbers, there are infinitely many rational numbers p/q such that ".
Read more about this topic: Diophantine Approximation
Famous quotes containing the words measure of, measure and/or accuracy:
“REASON, is half of it, SENSE; and the measure of heaven itself is but the measure of our present appetites and concoctions.”
—Laurence Sterne (17131768)
“Who can measure the advantages that would result if the magnificent abilities of these women could be devoted to the needs of government, society and home, instead of being consumed in the struggle to obtain their birthright of individual freedom? Until this be gained we can never know, we can not even prophesy the capacity and power of women for the uplifting of humanity.”
—Susan B. Anthony (18201906)
“As for farming, I am convinced that my genius dates from an older era than the agricultural. I would at least strike my spade into the earth with such careless freedom but accuracy as the woodpecker his bill into a tree.”
—Henry David Thoreau (18171862)