In combinatorics, the Dinitz conjecture is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz, and proved in 1994 by Fred Galvin.
The Dinitz conjecture, now a theorem, is that given an n × n square array, a set of m symbols with m ≥ n, and for each cell of the array an n-element set drawn from the pool of m symbols, it is possible to choose a way of labeling each cell with one of those elements in such a way that no row or column repeats a symbol.
The Dinitz conjecture is closely related to graph theory, in which it can be succinctly stated as for natural . It means that the list chromatic index of the complete bipartite graph equals . In fact, Fred Galvin proved the Dinitz conjecture as a special case of his theorem stating that the list chromatic index of any bipartite multigraph is equal to its chromatic index. Moreover, it is also a special case of the edge list coloring conjecture saying that the same holds not only for bipartite graphs, but also for any loopless multigraph.
Famous quotes containing the word conjecture:
“What these perplexities of my uncle Toby were,tis impossible for you to guess;Mif you could,I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,I would tear it out of my book.”
—Laurence Sterne (17131768)