Discovery and History
Much astronomical work relies on the study of spectra - the light from astronomical objects dispersed using a prism or, more usually, a diffraction grating. A typical stellar spectrum will consist of a continuum, containing absorption lines, each of which is attributed to a particular atomic energy level transition in the atmosphere of the star.
All astronomical objects are affected by extinction, the absorption of photons by the interstellar medium. Interstellar absorption predominantly affects the whole spectrum in a continuous way, rather than causing absorption lines, but in 1922 astronomer Mary Lea Heger first observed a number of line-like absorption features which seemed to be interstellar in origin.
Their interstellar nature was shown by the fact that the strength of the observed absorption was roughly proportional to the extinction, and that in objects with widely differing radial velocities the absorption bands were not affected by Doppler shifting, implying that the absorption was not occurring in or around the object concerned. The name Diffuse Interstellar Band, or DIB for short, was coined to reflect the fact that the absorption features are much broader than the normal absorption lines seen in stellar spectra.
The first DIBs observed were those at wavelengths 578.0 and 579.7 nanometres. Other strong DIBs are seen at 628.4, 661.4 and 443.0 nm. The 443.0 nm DIB is particularly broad at about 1.2 nm across - typical intrinsic stellar absorption features are 0.1 nm or less across.
Later spectroscopic studies at higher spectral resolution and sensitivity revealed more and more DIBs; a catalogue of them in 1975 contained 25 known DIBs, and a decade later the number known had more than doubled. The first detection-limited survey was published by Peter Jenniskens and Xavier Desert in 1994 (see Figure above), which led to the first conference on The Diffuse Interstellar Bands at the University of Colorado in Boulder on May 16–19, 1994. Today over 300 have been detected.
In recent years, very high resolution spectrographs on the world's most powerful telescopes have been used to observe and analyse DIBs. Spectral resolutions of 0.005 nm are now routine using instruments at observatories such as the European Southern Observatory at Cerro Paranal, Chile, and the Anglo-Australian Observatory in Australia, and at these high resolutions, many DIBs are found to contain considerable sub-structure.
Read more about this topic: Diffuse Interstellar Band
Famous quotes containing the words discovery and, discovery and/or history:
“The new supplants the old. Yet mens minds are stuffed with outworn bunk. Educating the young in the latest findings of authorities and scholars in the social sciences is important. It is equally important to devise ways and means for aiding the middle-aged and old to reexamine hang-over unscientific doctrines and ideas in the light of recent discovery and research.”
—Mary Barnett Gilson (1877?)
“The gain is not the having of children; it is the discovery of love and how to be loving.”
—Polly Berrien Berends (20th century)
“In front of these sinister facts, the first lesson of history is the good of evil. Good is a good doctor, but Bad is sometimes a better.”
—Ralph Waldo Emerson (18031882)