Discovery and History
Much astronomical work relies on the study of spectra - the light from astronomical objects dispersed using a prism or, more usually, a diffraction grating. A typical stellar spectrum will consist of a continuum, containing absorption lines, each of which is attributed to a particular atomic energy level transition in the atmosphere of the star.
All astronomical objects are affected by extinction, the absorption of photons by the interstellar medium. Interstellar absorption predominantly affects the whole spectrum in a continuous way, rather than causing absorption lines, but in 1922 astronomer Mary Lea Heger first observed a number of line-like absorption features which seemed to be interstellar in origin.
Their interstellar nature was shown by the fact that the strength of the observed absorption was roughly proportional to the extinction, and that in objects with widely differing radial velocities the absorption bands were not affected by Doppler shifting, implying that the absorption was not occurring in or around the object concerned. The name Diffuse Interstellar Band, or DIB for short, was coined to reflect the fact that the absorption features are much broader than the normal absorption lines seen in stellar spectra.
The first DIBs observed were those at wavelengths 578.0 and 579.7 nanometres. Other strong DIBs are seen at 628.4, 661.4 and 443.0 nm. The 443.0 nm DIB is particularly broad at about 1.2 nm across - typical intrinsic stellar absorption features are 0.1 nm or less across.
Later spectroscopic studies at higher spectral resolution and sensitivity revealed more and more DIBs; a catalogue of them in 1975 contained 25 known DIBs, and a decade later the number known had more than doubled. The first detection-limited survey was published by Peter Jenniskens and Xavier Desert in 1994 (see Figure above), which led to the first conference on The Diffuse Interstellar Bands at the University of Colorado in Boulder on May 16–19, 1994. Today over 300 have been detected.
In recent years, very high resolution spectrographs on the world's most powerful telescopes have been used to observe and analyse DIBs. Spectral resolutions of 0.005 nm are now routine using instruments at observatories such as the European Southern Observatory at Cerro Paranal, Chile, and the Anglo-Australian Observatory in Australia, and at these high resolutions, many DIBs are found to contain considerable sub-structure.
Read more about this topic: Diffuse Interstellar Band
Famous quotes containing the words discovery and/or history:
“Next to the striking of fire and the discovery of the wheel, the greatest triumph of what we call civilization was the domestication of the human male.”
—Max Lerner (b. 1902)
“So in accepting the leading of the sentiments, it is not what we believe concerning the immortality of the soul, or the like, but the universal impulse to believe, that is the material circumstance, and is the principal fact in this history of the globe.”
—Ralph Waldo Emerson (18031882)