Differentiable Functions On Manifolds
See also: Differentiable manifold#Differentiable functionsIf M is a differentiable manifold, a real or complex-valued function ƒ on M is said to be differentiable at a point p if it is differentiable with respect to some (or any) coordinate chart defined around p. More generally, if M and N are differentiable manifolds, a function ƒ: M → N is said to be differentiable at a point p if it is differentiable with respect to some (or any) coordinate charts defined around p and ƒ(p).
Read more about this topic: Differentiable Function
Famous quotes containing the word functions:
“Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinerymore wonderful because it is not machinery at all or predictable.”
—Kate Millett (b. 1934)