Differentiable Function - Differentiability in Higher Dimensions

Differentiability in Higher Dimensions

See also: Multivariable calculus

A function f: RmRn is said to be differentiable at a point x0 if there exists a linear map J: RmRn such that

If a function is differentiable at x0, then all of the partial derivatives must exist at x0, in which case the linear map J is given by the Jacobian matrix. A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus.

Note that existence of the partial derivatives (or even all of the directional derivatives) does not guarantee that a function is differentiable at a point. For example, the function ƒ: R2 → R defined by

is not differentiable at (0, 0), but all of the partial derivatives and directional derivatives exist at this point. For a continuous example, the function

is not differentiable at (0, 0), but again all of the partial derivatives and directional derivatives exist.

It is known that if the partial derivatives of a function all exist and are continuous in a neighborhood of a point, then the function must be differentiable at that point, and is in fact of class C1.

Read more about this topic:  Differentiable Function

Famous quotes containing the words higher and/or dimensions:

    By the artist’s seizing any one object from nature, that object no longer is part of nature. One can go so far as to say that the artist creates the object in that very moment by emphasizing its significant, characteristic, and interesting aspects or, rather, by adding the higher values.
    Johann Wolfgang Von Goethe (1749–1832)

    Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.
    —J.L. (John Langshaw)