Defining The Point Range
Regardless if ΔP is infinitesimal or finite, there is (at least—in the case of the derivative—theoretically) a point range, where the boundaries are P ± (.5)ΔP (depending on the orientation—ΔF(P), δF(P) or ∇F(P)):
- LB = Lower Boundary; UB = Upper Boundary;
Derivatives can be regarded as functions themselves, harboring their own derivatives. Thus each function is home to sequential degrees ("higher orders") of derivation, or differentiation. This property can be generalized to all difference quotients.
As this sequencing requires a corresponding boundary splintering, it is practical to break up the point range into smaller, equi-sized sections, with each section being marked by an intermediary point ("Pi"), where LB = P0 and UB = Pń, the nth point, equaling the degree/order:
Read more about this topic: Difference Quotient
Famous quotes containing the words defining the, defining, point and/or range:
“Art, if one employs this term in the broad sense that includes poetry within its realm, is an art of creation laden with ideals, located at the very core of the life of a people, defining the spiritual and moral shape of that life.”
—Ivan Sergeevich Turgenev (18181883)
“The U.S. is becoming an increasingly fatherless society. A generation ago, an American child could reasonably expect to grow up with his or her father. Today an American child can reasonably expect not to. Fatherlessness is now approaching a rough parity with fatherhood as a defining feature of American childhood.”
—David Blankenhorn (20th century)
“The point of cities is multiplicity of choice.”
—Jane Jacobs (b. 1916)
“The more the specific feelings of being under obligation range themselves under a supreme principle of human dependence the clearer and more fertile will be the realization of the concept, indispensable to all true culture, of service; from the service of God down to the simple social relationship as between employer and employee.”
—Johan Huizinga (18721945)