Diagram (category Theory) - Commutative Diagrams

Commutative Diagrams

Diagrams and functor categories are often visualized by commutative diagrams, particularly if the index category is a finite poset category with few elements: one draws a commutative diagram with a node for every object in the index category, and an arrow for a generating set of morphisms, omitting identity maps and morphisms that can be expressed as compositions. The commutativity corresponds to the uniqueness of a map between two objects in a poset category. Conversely, every commutative diagram represents a diagram (a functor from a poset index category) in this way.

Not every diagram commutes, as not every index category is a poset category: most simply, the diagram of a single object with an endomorphism, or with two parallel arrows (; ) need not commute. Further, diagrams may be impossible to draw (because infinite) or simply messy (because too many objects or morphisms); however, schematic commutative diagrams (for subcategories of the index category, or with ellipses, such as for a directed system) are used to clarify such complex diagrams.

Read more about this topic:  Diagram (category Theory)

Famous quotes containing the word diagrams:

    Professors could silence me then; they had figures, diagrams, maps, books.... I was learning that books and diagrams can be evil things if they deaden the mind of man and make him blind or cynical before subjection of any kind.
    Agnes Smedley (1890–1950)