Statement of The Lemma
Let T be a first-order theory in the language of arithmetic and capable of representing all computable functions. Let ψ be a formula in the theory T with one free variable. The diagonal lemma states that there is a sentence φ such that φ ↔ ψ(#(φ)) is provable in T.
Intuitively, φ is a self-referential sentence saying that φ has the property ψ. The sentence φ can also be viewed as a fixed point of the operation assigning to each formula θ the sentence ψ(#(θ)). The sentence φ constructed in the proof is not literally the same as ψ(#(φ)), but is provably equivalent to it in the theory T.
Read more about this topic: Diagonal Lemma
Famous quotes containing the words statement of the, statement of and/or statement:
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)
“I think, therefore I am is the statement of an intellectual who underrates toothaches.”
—Milan Kundera (b. 1929)
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)