Descriptive Set Theory - Polish Spaces

Polish Spaces

Descriptive set theory begins with the study of Polish spaces and their Borel sets.

A Polish space is a second countable topological space that is metrizable with a complete metric. Equivalently, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line, the Baire space, the Cantor space, and the Hilbert cube .

Read more about this topic:  Descriptive Set Theory

Famous quotes containing the words polish and/or spaces:

    ‘Then I polish all the silver, which a supper-table lacquers;
    Then I write the pretty mottoes which you find inside the
    crackers’—
    Sir William Schwenck Gilbert (1836–1911)

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)