Definition
Let be an abelian category. We obtain the derived category in several steps:
- The basic object is the category of chain complexes in . Its objects will be the objects of the derived category but its morphisms will be altered.
- Pass to the homotopy category of chain complexes by identifying morphisms which are chain homotopic.
- Pass to the derived category by localizing at the set of quasi-isomorphisms. Morphisms in the derived category may be explicitly described as roofs, where s is a quasi-isomorphism and f is any morphism of chain complexes.
The second step may be bypassed since a homotopy equivalence is in particular a quasi-isomorphism. But then the simple roof definition of morphisms must be replaced by a more complicated one using finite strings of morphisms (technically, it is no longer a calculus of fractions), and the triangulated category structure of arises in the homotopy category. So the one step construction is more efficient in a way but more complicated and the result is less powerful.
Read more about this topic: Derived Category
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)