Definition
Let be an abelian category. We obtain the derived category in several steps:
- The basic object is the category of chain complexes in . Its objects will be the objects of the derived category but its morphisms will be altered.
- Pass to the homotopy category of chain complexes by identifying morphisms which are chain homotopic.
- Pass to the derived category by localizing at the set of quasi-isomorphisms. Morphisms in the derived category may be explicitly described as roofs, where s is a quasi-isomorphism and f is any morphism of chain complexes.
The second step may be bypassed since a homotopy equivalence is in particular a quasi-isomorphism. But then the simple roof definition of morphisms must be replaced by a more complicated one using finite strings of morphisms (technically, it is no longer a calculus of fractions), and the triangulated category structure of arises in the homotopy category. So the one step construction is more efficient in a way but more complicated and the result is less powerful.
Read more about this topic: Derived Category
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)