Density of States - Symmetry and Density of States

Symmetry and Density of States

There are a large variety of systems and types of states for which DOS calculations can be done. An important property of a condensed matter system is the symmetry of the structure on its microscopic scale. Fluids, glasses or amorphous solids have dispersion relations with a rotational symmetry. In spherically symmetric systems the integrals of functions, for instance, are one-dimensional because all variables in the calculation depend only on the radial parameter of the dispersion relation.

Angular dependent calculations or measurements on systems consisting of a single crystal of a compound, for example, are anisotropic, meaning the density of states will be different in one crystallographic direction than in another. Anisotropic problems are more difficult to calculate, and the anisotropic density of states is more difficult to visualize, so methods such as calculating the DoS for particular points or directions only, or calculating the projected density of states (PDOS), are often used.

Measurements on powders or polycrystalline samples require evaluation and calculation functions and integrals over the whole domain, most often a Brillouin zone, of the dispersion relations the system of interest. Sometimes the symmetry of the system is high. The shape of the functions describing the dispersion relations of the system appears many times over the whole domain of the dispersion relation. In such cases the effort to calculate the DOS can be reduced by a great amount when the calculation is limited to a reduced zone or fundamental domain. The Brillouin zone of the FCC lattice in the figure on the right has the 48 fold symmetry of the point group Oh with full octahedral symmetry. This means that the integration over the whole domain of the Brillouin zone can be reduced to a 48-th part of the whole Brillouin zone. As a crystal structure periodic table shows, there are many elements with a FCC crystal structure, like Diamond, Silicon and Platinum and their Brillouin zones and dispersion relations have this 48 fold symmetry.

Two other familiar crystal structures are the BCC and HCP structures with cubic and hexagonal lattices. The BCC structure has the 24 fold pyritohedral symmetry of the point group Th. The HCP structure has the 12 fold prismatic dihedral symmetry of the point group D3h. A complete list of symmetry properties of a point group can be found in point group character tables.

In general it is easier to calculate a DOS when the symmetry of the system is higher and the number of topological dimensions of the dispersion relation is lower. The DOS of dispersion relations with rotational symmetry can often be calculated analytically. This is fortunate, since many materials of practical interest, such as steel and silicon, have high symmetry.

Read more about this topic:  Density Of States

Famous quotes containing the words symmetry and/or states:

    What makes a regiment of soldiers a more noble object of view than the same mass of mob? Their arms, their dresses, their banners, and the art and artificial symmetry of their position and movements.
    George Gordon Noel Byron (1788–1824)

    I cannot say what poetry is; I know that our sufferings and our concentrated joy, our states of plunging far and dark and turning to come back to the world—so that the moment of intense turning seems still and universal—all are here, in a music like the music of our time, like the hero and like the anonymous forgotten; and there is an exchange here in which our lives are met, and created.
    Muriel Rukeyser (1913–1980)