Dense Set - Related Notions

Related Notions

A point x of a subset A of a topological space X is called a limit point of A (in X) if every neighbourhood of x also contains a point of A other than x itself, and an isolated point of A otherwise. A subset without isolated points is said to be dense-in-itself.

A subset A of a topological space X is called nowhere dense (in X) if there is no neighborhood in X on which A is dense. Equivalently, a subset of a topological space is nowhere dense if and only if the interior of its closure is empty. The interior of the complement of a nowhere dense set is always dense. The complement of a closed nowhere dense set is a dense open set. Given a topological space X, a subset A of X that can be expressed as the union of countably many nowhere dense subsets of X is called meagre. The rational numbers, while dense in the real numbers, are meagre as a subset of the reals.

A topological space with a countable dense subset is called separable. A topological space is a Baire space if and only if the intersection of countably many dense open sets is always dense. A topological space is called resolvable if it is the union of two disjoint dense subsets. More generally, a topological space is called κ-resolvable if it contains κ pairwise disjoint dense sets.

An embedding of a topological space X as a dense subset of a compact space is called a compactification of X.

A linear operator between topological vector spaces X and Y is said to be densely defined if its domain is a dense subset of X and if its range is contained within Y. See also continuous linear extension.

A topological space X is hyperconnected if and only if every nonempty open set is dense in X. A topological space is submaximal if and only if every dense subset is open.

Read more about this topic:  Dense Set

Famous quotes containing the words related and/or notions:

    Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and others—and whether they see everyday chores as related to how we treat this planet.
    Eda Le Shan (20th century)

    Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.
    Jonathan Swift (1667–1745)