In electricity grids, demand response (DR) is similar to dynamic demand mechanisms to manage customer consumption of electricity in response to supply conditions, for example, having electricity customers reduce their consumption at critical times or in response to market prices. The difference is that demand response mechanisms respond to explicit requests to shut off, whereas dynamic demand devices passively shut off when stress in the grid is sensed. Demand response can involve actually curtailing power used or by starting on-site generation which may or may not be connected in parallel with the grid. This is a quite different concept from energy efficiency, which means using less power to perform the same tasks, on a continuous basis or whenever that task is performed. At the same time, demand response is a component of smart energy demand, which also includes energy efficiency, home and building energy management, distributed renewable resources, and electric vehicle charging.
Current demand response schemes are implemented with large and small commercial as well as residential customers, often through the use of dedicated control systems to shed loads in response to a request by a utility or market price conditions. Services (lights, machines, air conditioning) are reduced according to a preplanned load prioritization scheme during the critical time frames. An alternative to load shedding is on-site generation of electricity to supplement the power grid. Under conditions of tight electricity supply, demand response can significantly decrease the peak price and, in general, electricity price volatility.
Demand response is generally used to refer to mechanisms used to encourage consumers to reduce demand, thereby reducing the peak demand for electricity. Since electrical generation and transmission systems are generally sized to correspond to peak demand (plus margin for forecasting error and unforeseen events), lowering peak demand reduces overall plant and capital cost requirements. Depending on the configuration of generation capacity, however, demand response may also be used to increase demand (load) at times of high production and low demand. Some systems may thereby encourage energy storage to arbitrage between periods of low and high demand (or low and high prices).
There are three types of demand response - emergency demand response, economic demand response and ancillary services demand response. Emergency demand response is employed to avoid involuntary service interruptions during times of supply scarcity. Economic demand response is employed to allow electricity customers to curtail their consumption when the productive or convenience of consuming that electricity is worth less to them than paying for the electricity. Ancillary services demand response consists of a number of specialty services that are needed to ensure the secure operation of the transmission grid and which have traditionally been provided by generators.
Read more about Demand Response: Smart Grid Application, Electricity Pricing, Electricity Grids and Peak Demand Response, Load Shedding, Incentives To Shed Loads, Technologies For Demand Reduction, Short-term Inconvenience For Long-term Benefits, US Energy Policy Act Regarding Demand Response, Demand Reduction and The Use of Diesel Generators in The UK National Grid
Famous quotes containing the words demand and/or response:
“All television ever did was shrink the demand for ordinary movies. The demand for extraordinary movies increased. If any one thing is wrong with the movie industry today, it is the unrelenting effort to astonish.”
—Clive James (b. 1939)
“Tears are sometimes an inappropriate response to death. When a life has been lived completely honestly, completely successfully, or just completely, the correct response to deaths perfect punctuation mark is a smile.”
—Julie Burchill (b. 1960)