Degree Function in Abstract Algebra
Given a ring R, the polynomial ring R is the set of all polynomials in x that have coefficients chosen from R. In the special case that R is also a field, then the polynomial ring R is a principal ideal domain and, more importantly to our discussion here, a Euclidean domain.
It can be shown that the degree of a polynomial over a field satisfies all of the requirements of the norm function in the euclidean domain. That is, given two polynomials f(x) and g(x), the degree of the product f(x)•g(x) must be larger than both the degrees of f and g individually. In fact, something stronger holds:
- deg( f(x) • g(x) ) = deg(f(x)) + deg(g(x))
For an example of why the degree function may fail over a ring that is not a field, take the following example. Let R =, the ring of integers modulo 4. This ring is not a field (and is not even an integral domain) because 2•2 = 4 (mod 4) = 0. Therefore, let f(x) = g(x) = 2x + 1. Then, f(x)•g(x) = 4x2 + 4x + 1 = 1. Thus deg(f•g) = 0 which is not greater than the degrees of f and g (which each had degree 1).
Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f(x) = 0 to also be undefined so that it follows the rules of a norm in a euclidean domain.
Read more about this topic: Degree Of A Polynomial
Famous quotes containing the words degree, function, abstract and/or algebra:
“Wonderful Force of Public Opinion! We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of influence it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?”
—Thomas Carlyle (17951881)
“Any translation which intends to perform a transmitting function cannot transmit anything but informationhence, something inessential. This is the hallmark of bad translations.”
—Walter Benjamin (18921940)
“The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the readers eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.”
—J. David Bolter (b. 1951)
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)