Degree (graph Theory)

Degree (graph Theory)

In graph theory, the degree (or valency) of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex is denoted The maximum degree of a graph G, denoted by Δ(G), and the minimum degree of a graph, denoted by δ(G), are the maximum and minimum degree of its vertices. In the graph on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, all degrees are the same, and so we can speak of the degree of the graph.

Read more about Degree (graph Theory):  Handshaking Lemma, Degree Sequence, Special Values, Global Properties

Famous quotes containing the word degree:

    It has become a people’s war, and peoples of all sorts and races, of every degree of power and variety of fortune, are involved in its sweeping processes of change and settlement.
    Woodrow Wilson (1856–1924)