Dead-end Elimination - Generalizations

Generalizations

More powerful and more general criteria have been introduced that improve both the efficiency and the eliminating power of the method for both prediction and design applications. One example is a refinement of the singles elimination criterion known as the Goldstein criterion, which arises from fairly straightforward algebraic manipulation before applying the minimization:


E_{k}(r_{k}^{A}) - E_{k}(r_{k}^{B}) + \sum_{l=1}^{N} \min_{X} \left(E_{kl}(r_{k}^{A}, r_{l}^{X}) - E_{kl}(r_{k}^{B}, r_{l}^{X})\right) > 0

Thus rotamer can be eliminated if any alternative rotamer from the set at contributes less to the total energy than . This is an improvement over the original criterion, which requires comparison of the best possible (that is, the smallest) energy contribution from with the worst possible contribution from an alternative rotamer.

An extended discussion of elaborate DEE criteria and a benchmark of their relative performance can be found in .

Read more about this topic:  Dead-end Elimination