Statement of The Theorem
A random variable X has a Bernoulli distribution if Pr(X = 1) = p and Pr(X = 0) = 1 − p for some p ∈ (0, 1).
De Finetti's theorem states that the probability distribution of any infinite exchangeable sequence of Bernoulli random variables is a "mixture" of the probability distributions of independent and identically distributed sequences of Bernoulli random variables. "Mixture", in this sense, means a weighted average, but this need not mean a finite or countably infinite (i.e., discrete) weighted average: it can be an integral rather than a sum.
More precisely, suppose X1, X2, X3, ... is an infinite exchangeable sequence of Bernoulli-distributed random variables. Then there is some probability distribution m on the interval and some random variable Y such that
- The probability distribution of Y is m, and
- The conditional probability distribution of the whole sequence X1, X2, X3, ... given the value of Y is described by saying that
- X1, X2, X3, ... are conditionally independent given Y, and
- For any i ∈ {1, 2, 3, ...}, the conditional probability that Xi = 1, given the value of Y, is Y.
Read more about this topic: De Finetti's Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)
“The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.”
—Ralph Waldo Emerson (18031882)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)