Daptomycin - Biosynthesis

Biosynthesis

Daptomycin is a cyclic lipopeptide antibiotic produced by the organism Streptomyces roseosporus. Daptomycin consists of thirteen amino acids, ten of which are arranged in a cyclic fashion, and three that adorn an exocyclic tail. Two non-proteinogenic amino acids exist in the lipopeptide, the unusual amino acid L-kynurenine (Kyn), only known to Daptomycin, and L-3-methylglutamic acid (mGlu). The N-terminus of the exocyclic tryptophan residue is coupled to decanoic acid, a medium chain (C10) fatty acid. Biosynthesis is initiated by the coupling of decanoic acid to the N-terminal tryptophan, followed by the coupling of the remaining amino acids by nonribosomal peptide synthetase (NRPS) mechanisms. Finally, a cyclization event occurs, which is catalyzed by a thioesterase enzyme, and subsequent release of the lipopeptide is granted.

The non-ribosomal peptide synthetase (NRPS) responsible for the synthesis of Daptomycin is encoded by three overlapping genes, dptA, dptBC and dptD. The dptE and dptF genes, immediately upstream of dptA, are likely to be involved in the initiation of daptomycin biosynthesis by coupling decanoic acid to the N-terminal Trp. These novel genes (dptE, dptF ) correspond to products that most likely work in conjunction with a unique condensation domain to acylate the first amino acid (tryptophan). These and other novel genes (dptI, dptJ) are believed to be involved in supplying the non-proteinogenic amino acids L-3-methylglutamic acid and Kyn; they are located next to the NRPS genes.

The decanoic acid portion of Daptomycin is synthesized by fatty acid synthase machinery (Figure 2). Posttranslational modification of the apo-acyl carrier protein (ACP, thiolation, or T domain) by a phosphopantetheinyltransferase (PPTase) enzyme catalyzes the transfer of a flexible phosphopantetheine arm from coenzyme A to a conserved serine in the ACP domain through a phosphodiester linkage. The holo-ACP can now provide a thiol on which the substrate and acyl chains are covalently tethered during chain elongations. The two core catalytic domains are an acyltransferase (AT) and a ketosynthase (KS). The AT acts upon a malonyl CoA substrate and transfers an acyl group to the thiol of the ACP domain. This net transthiolation is an energy neutral step. Next, the acyl-S-ACP gets transthiolated to a conserved cysteine on the KS; the KS decarboxylates the downstream malonyl-S-ACP and forms a β-ketoacyl-S-ACP. This serves as the substrate for the next cycle of elongation. Before the next cycle begins, however, the β-keto group undergoes reduction to the corresponding alcohol catalyzed by a ketoreductase (KR) domain, followed by dehydration to the olefin catalyzed by a dehydratase (DH) domain, and finally reduction to the methylene catalyzed by an enoylreductase (ER) domain. Each KS catalytic cycle results in the net addition of two carbons. After three more iterations of elongation, a thioesterase enzyme catalyzes the hydrolysis, and thus release, of the free C-10 fatty acid.

To synthesize the peptide portion of Daptomycin, the mechanism of a non-ribosomal peptide synthetase (NRPS) is employed. The biosynthetic machinery of an NRPS system is composed of multimodular enzymatic assembly lines that contain one module for each amino acid monomer incorporated. Within each module, there are catalytic domains that carry out the elongation of the growing peptidyl chain. The growing peptide is covalently tethered to a thiolation (T) domain; here it is termed the peptidyl carrier protein (PCP), as it carries the growing peptide from one catalytic domain to the next. Again, the apo-T domain must be primed to the holo-T domain via a PPTase, attaching a flexible phosphopantetheine arm to a conserved serine residue. An adenylation (A) domain selects the amino acid monomer to be incorporated and activates the carboxylate with ATP to make the aminoacyl-AMP. Next, the A domain installs an aminoacyl group on the thiolate of the adjacent T domain (PCP). The condensation (C) domain catalyzes the peptide bond forming reaction, which elicits chain elongation. It joins an upstream peptidyl-S-T to the downstream aminoacyl-S-T (Figure 7). Chain elongation by one aminoacyl residue and chain translocation to the next T domain occurs in concert. The order of these domains is C-A-T. In some instances, an epimerization (E) domain is necessary in those modules where L-amino acid monomers are to be incorporated and epimerized to D-amino acids. The domain organization in such modules is C-A-T-E.

The first module has a three-domain C-A-T organization; these often occur in assembly lines that make N-acylated peptides. The first C domain catalyzes N-acylation of the initiating amino acid (tryptophan) while it is installed on T. An adenylating enzyme (Ad) catalyzes the condensation of decanoic acid and the N-terminal tryptophan, which incorporates decanoic acid into the growing peptide (Figure 3). The genes responsible for this coupling event are dptE and dptF, which are located upstream of dptA, the first gene of the Daptomycin NRPS biosynthetic gene cluster. Once the coupling of decanoic acid to the N-terminal tryptophan residue occurs, the condensation of amino acids begins, catalyzed by the NRPS.

The first five modules of the NRPS are encoded by the dptA gene and catalyze the condensation of L-tryptophan, D-aspartate, L-aspartate, L-threonine, and glycine, respectively (Figure 4). Modules 6-11, which catalyze the condensation of L-ornithine, L-aspartate, D-alanine, L-aspartate, glycine, and D-serine are encoded for the dptBC gene (Figure 5). DptD catalyzes the incorporation of two non-proteinogenic amino acids, L-3-methylglutamic acid (mGlu) and the unusual amino acid L-kynurenine (Kyn), which is only known thus far to Daptomycin, into the growing peptide (Figure 6). Elongation by these NRPS modules ultimately leads to macrocyclization and release in which an α-amino group, namely threonine, acts as an internal nucleophile during cyclization to yield the 10 amino acid ring (Figure 6). The termination module in the NRPS assembly line has a C-A-T-TE organization. The thioesterase (TE) domain catalyzes chain termination and release of the mature lipopeptide.

With the recent advances in molecular engineering over the past 25 years, new approaches in the production of novel antibiotics have emerged. Innovations in cloning and the subsequent analysis of antibiotic gene clusters, the engineering of biosynthetic pathways in Escherichia coli, the transfer of engineered pathways from E. coli into Streptomyces expression hosts, and finally the stable maintenance and expression of cloned genes are all processes that have streamlined the process. More comprehensive understanding and knowledge of the mechanisms, as well as the substrate specificities during their assembly by polyketide synthases, nonribosomal peptide synthetases, glycosyltransferases and other enzymes have made molecular engineering design and outcomes more predictable.

The molecular engineering of Daptomycin, the only marketed acidic lipopeptide antibiotic up to date (Figure 8), has seen many advances since its inception into clinical medicine in 2003. It is an attractive target for combinatorial biosynthesis for many reasons: second generation derivatives are currently in the clinic for development; Streptomyces roseosporus, the producer organism of daptomycin, is amenable to genetic manipulation; the daptomycin biosynthetic gene cluster has been cloned, sequenced and expressed in a S. lividans; the lipopeptide biosynthetic machinery has the potential to be interrupted by variations of natural precursors, as well as precursor-directed biosynthesis, gene deletion, genetic exchange, and module exchange; the molecular engineering tools have been developed to facilitate the expression of the three individual NRPS genes from three different sites in the chromosome, using ermEp* for expression of two genes from ectopic loci; other lipopeptide gene clusters, both related and unrelated to daptomycin, have been cloned and sequenced, thus providing genes and modules to allow the generation of hybrid molecules; derivatives can be afforded via chemoenzymatic synthesis; and lastly, efforts in medicinal chemistry are able to further modify these products of molecular engineering.

New derivatives of daptomycin (Figure 9) were originally generated by exchanging the third NRPS subunit (DptD) with the terminal subunits from the A54145 (Factor B1) or calcium-dependent antibiotic (CDA) pathways to create molecules containing Trp13, Ile13, or Val13. Dpt D is responsible for incorporating the penultimate amino acid, 3-methyl-glutamic acid (3mGlu12), and the last amino acid, kynurenine (Kyn13), into the growing chain. This exchange was achieved without engineering the interpeptide dockingsites. These whole-subunit exchanges have been coupled combinatorially with the deletion of the Glu12-methyltransferase gene, with module exchanges at intradomain linker sites at Ala8 and Ser11, and with variations of natural fatty acid side chains to generate over seventy novel lipopeptides in significant quantities; most of these resultant lipopeptides have potent antibacterial activities. Some of these compounds have in vitro antibacterial activities analogous to daptomycin. Further, one displayed ameliorated activity against an E. coli imp mutant that was defective in its ability to assemble its inherent lipopolysaccharide. A number of these compounds were produced in yields that spanned from 100 to 250 mg/liter; this, of course, opens up the possibility for successful scale-ups by means of fermentation techniques. Only a small percentage of the possible combinations of amino acids within the peptide core have been investigated thus far.

Thus, the biosynthetic genes for daptomycin, a calcium-dependent antibiotic, have been cloned, sequenced, analyzed bioinformatically, genetically, and biochemically. The resultant information on the organization and expression of NRPS genes, among others, has been exploited and utilized to create combinatorial libraries of hybrid lipopeptide antibiotics related to daptomycin that have proven as effective antibiotics thus far in clinical trials .

Read more about this topic:  Daptomycin