Ligand Field Perspective
Crystal field theory describes a number of physical phenomena well but does not describe bonding nor offer an explanation for why ns electrons are ionized before (n-1)d electrons. The more recent ligand field theory offers an easy to understand explanation that models phenomenon relatively well.
According to the model present by ligand field theory, the ns orbital is involved in bonding to the ligands and forms a strongly bonding orbital which has predominantly ligand character and the correspondingly strong anti-bonding orbital which is unfilled and usually well above the lowest unoccupied molecular orbital (LUMO). Since the orbitals resulting from the ns orbital are either buried in bonding or elevated well above the valence, the ns orbitals are not relevant to describing the valence. Depending on the geometry of the final complex, either all three of the np orbitals or portions of them are involved in bonding, similar to the ns orbitals. The np orbitals if any that remain non-bonding still exceed the valence of the complex. That leaves the (n-1)d orbitals to be involved in some portion of the bonding and in the process also describes the metal complex's valence electrons. The final description of the valence is highly dependent on the complex's geometry, in turn highly dependent on the d electron count and character of the associated ligands.
For example, in the MO diagram provided for the 3+ the ns orbital (which is placed above (n-1)d in the representation of atomic orbitals (AO)) is used in a linear combination with the ligand orbitals, forming a very stable bonding orbital with significant ligand character as well as an unoccupied high energy anti-bonding orbital which is not shown. In this situation the complex geometry is octahedral, which means two of the d orbitals have the proper geometry to be involved in bonding. The other three d orbitals in the basic model do not have significant interactions with the ligands and remain as three degenerate non-bonding orbitals. The two orbitals that are involved in bonding form a linear combination with two ligand orbitals with the proper symmetry. This results in two filled bonding orbitals and two orbitals which are usually the lowest unoccupied molecular orbitals (LUMO) or the highest partially filled molecular orbitals - a variation on the high occupied molecular orbitals (HOMO).
Read more about this topic: D Electron Count
Famous quotes containing the words field and/or perspective:
“The field of the poor may yield much food, but it is swept away through injustice.”
—Bible: Hebrew, Proverbs 13:23.
“No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.”
—Anna Quindlen (20th century)