Cyclohexane Conformation - Chair Conformation

Chair Conformation

The two chair conformations have the lowest total energy, and are therefore the most stable. In the basic chair conformation, the carbons C1 through C6 alternate between two parallel planes, one with C1, C3 and C5, the other with C2, C4, and C6. The molecule has a symmetry axis perpendicular to these two planes, and is congruent to itself after a rotation of 120° about that axis. The two chair conformations have the same shape; one is congruent to the other after 60° rotation about that axis, or after being mirrored across the mean plane. The perpendicular projection of the ring onto its mean plane is a regular hexagon. All C-C bonds are tilted relative to the mean plane, but opposite bonds (such as C1-C2 and C4-C5) are parallel to each other.

As a consequence of the ring warping, six of the 12 carbon-hydrogen bonds end up almost perpendicular to the mean plane and almost parallel to the symmetry axis, with alternating directions, and are said to be axial. The other six C-H bonds lie almost parallel to the mean plane, and are said to be equatorial.

The precise angles are such that the two C-H bonds in each carbon, one axial and one equatorial, point in opposite senses relative to the symmetry axis. Thus, in a chair conformation, there are three C-H bonds of each kind — axial "up", axial "down", equatorial "up", and equatorial "down"; and each carbon has one "up" and one "down", and one axial and one equatorial. The hydrogens in successive carbons are thus staggered so that there is little torsional strain. This geometry is often preserved when the hydrogen atoms are replaced by halogens or other simple groups.

The conversion from one chair shape to the other is called ring flipping or chair-flipping. Carbon-hydrogen bonds that are axial in one configuration become equatorial in the other, and vice-versa; but their "up" or "down" character remains the same.

In cyclohexane, the two chair conformations have the same energy. At 25°C, 99.99% of all molecules in a cyclohexane solution will be in a chair conformation.

In cyclohexane derivatives, the two chair conformations may have different energies, depending upon the identity and location of the substituents. For example, in methylcyclohexane the lowest energy conformation is a chair one where the methyl group is in equatorial position. This configuration reduces interaction between the methyl group (on carbon number 1) and the hydrogens at carbons 3 and 5; more importantly, it avoids two gauche butane interactions (of the C1-CH3 bond with the C2-C3 and C5-C6 ring bonds). Similarly, cis-1,3-dimethylcyclohexane usually has both methyls in the equatorial position so as to avoid interaction between them. In six-membered heterocycles such as pyran, a substituent next to an heteroatom may prefer the axial position due to the anomeric effect.

The preference of a substituent towards the equatorial conformation is measured in terms of its A value, which is the Gibbs free energy difference between the two chair conformations, with the substituent in equatorial or in axial position. A positive A value indicates preference towards the equatorial position. The magnitude of the A values ranges from nearly zero for very small substituents such as deuterium, to about 5 kcal/mol for very bulky substituents such as the tert-butyl group.

Read more about this topic:  Cyclohexane Conformation

Famous quotes containing the word chair:

    Genghis Khan, in his usual jodhpurs accessorized with whip, straddled a canvas chair and gloated upon the fairyland he had built. Journalists, photographers, secretaries, sycophants, script girls, and set dressers milled and stirred around him, activity ... irresistibly reminiscent of the movement of maggots upon rotting meat.
    Angela Carter (1940–1992)