Symmetries and Model Theory
Evans, Macpherson & Ivanov (1997) provide a model-theoretic description of the covering maps of cycles.
Tararin (2001, 2001) studies groups of automorphisms of cycles with various transitivity properties. Giraudet & Holland (2002) characterize cycles whose full automorphism groups act freely and transitively. Campero-Arena & Truss (2009) characterize countable colored cycles whose automorphism groups act transitively. Truss (2009) studies the automorphism group of the unique (up to isomorphism) countable dense cycle.
Kulpeshov & Macpherson (2005) study minimality conditions on circularly ordered structures, i.e. models of first-order languages that include a cyclic order relation. These conditions are analogues of o-minimality and weak o-minimality for the case of linearly ordered structures. Kulpeshov (2006, 2009) continues with some characterizations of ω-categorical structures.
Read more about this topic: Cyclic Order
Famous quotes containing the words model and/or theory:
“The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Childs play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.”
—Erik H. Erikson (20th century)
“The human species, according to the best theory I can form of it, is composed of two distinct races, the men who borrow and the men who lend.”
—Charles Lamb (17751834)