Cycle Space - The Cycle Space Over A Field or Commutative Ring

The Cycle Space Over A Field or Commutative Ring

The construction of the integral cycle space can be carried out for any field, abelian group, or (most generally) commutative ring (with unity) R replacing the integers. If R is a field, the cycle space is a vector space over R with dimension m - n + c, where c is the number of connected components of G. If R is any commutative ring, the cycle space is a free R-module with rank m - n + c.

When R is an abelian group such a cycle may also be called an R-flow on G. Nowhere-zero R-flows for a finite abelian group R of k elements are related to nowhere-zero integral k-flows in Tutte's theory. The number of nowhere-zero R-cycles is an evaluation of the Tutte polynomial, dual to the number of proper colorings of the graph (Tutte, 1984, Section IX.4).

Read more about this topic:  Cycle Space

Famous quotes containing the words cycle, space, field and/or ring:

    The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is life—birth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.
    Paula C. Lowe (20th century)

    Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.
    Blaise Pascal (1623–1662)

    My business is stanching blood and feeding fainting men; my post the open field between the bullet and the hospital. I sometimes discuss the application of a compress or a wisp of hay under a broken limb, but not the bearing and merits of a political movement. I make gruel—not speeches; I write letters home for wounded soldiers, not political addresses.
    Clara Barton (1821–1912)

    Generally, about all perception, we can say that a sense is what has the power of receiving into itself the sensible forms of things without the matter, in the way in which a piece of wax takes on the impress of a signet ring without the iron or gold.
    Aristotle (384–323 B.C.)