The Cycle Space Over A Field or Commutative Ring
The construction of the integral cycle space can be carried out for any field, abelian group, or (most generally) commutative ring (with unity) R replacing the integers. If R is a field, the cycle space is a vector space over R with dimension m - n + c, where c is the number of connected components of G. If R is any commutative ring, the cycle space is a free R-module with rank m - n + c.
When R is an abelian group such a cycle may also be called an R-flow on G. Nowhere-zero R-flows for a finite abelian group R of k elements are related to nowhere-zero integral k-flows in Tutte's theory. The number of nowhere-zero R-cycles is an evaluation of the Tutte polynomial, dual to the number of proper colorings of the graph (Tutte, 1984, Section IX.4).
Read more about this topic: Cycle Space
Famous quotes containing the words cycle, space, field and/or ring:
“Oh, life is a glorious cycle of song,
A medley of extemporanea;
And love is a thing that can never go wrong;
And I am Marie of Roumania.”
—Dorothy Parker (18931967)
“Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”
—Alicia F. Lieberman (20th century)
“And there, a field rat, startled, squealing bleeds,
His belly close to ground. I see the blade,
Blood-stained, continue cutting weeds and shade.”
—Jean Toomer (18941967)
“Time has no divisions to mark its passage, there is never a thunderstorm or blare of trumpets to announce the beginning of a new month or year. Even when a new century begins it is only we mortals who ring bells and fire off pistols.”
—Thomas Mann (18751955)