The Cycle Space Over A Field or Commutative Ring
The construction of the integral cycle space can be carried out for any field, abelian group, or (most generally) commutative ring (with unity) R replacing the integers. If R is a field, the cycle space is a vector space over R with dimension m - n + c, where c is the number of connected components of G. If R is any commutative ring, the cycle space is a free R-module with rank m - n + c.
When R is an abelian group such a cycle may also be called an R-flow on G. Nowhere-zero R-flows for a finite abelian group R of k elements are related to nowhere-zero integral k-flows in Tutte's theory. The number of nowhere-zero R-cycles is an evaluation of the Tutte polynomial, dual to the number of proper colorings of the graph (Tutte, 1984, Section IX.4).
Read more about this topic: Cycle Space
Famous quotes containing the words cycle, space, field and/or ring:
“The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.”
—Robert M. Pirsig (b. 1928)
“Art and power will go on as they have done,will make day out of night, time out of space, and space out of time.”
—Ralph Waldo Emerson (18031882)
“Every woman who visited the Fair made it the center of her orbit. Here was a structure designed by a woman, decorated by women, managed by women, filled with the work of women. Thousands discovered women were not only doing something, but had been working seriously for many generations ... [ellipsis in source] Many of the exhibits were admirable, but if others failed to satisfy experts, what of it?”
—Kate Field (18381908)
“When the merry bells ring round,
And the jocund rebecks sound
To many a youth and many a maid,
Dancing in the chequered shade;
And young and old come forth to play
On a sunshine holiday,”
—John Milton (16081674)