Cusp (singularity) - Examples

Examples

  • An ordinary cusp is given by x2 − y3 = 0, i.e. the zero-level-set of a type A2-singularity. Let f(x, y) be a smooth function of x and y and assume, for simplicity, that f(0,0) = 0. Then a type A2-singularity of f at (0,0) can be characterised by:
  1. Having a degenerate quadratic part, i.e. the quadratic terms in the Taylor series of f form a perfect square, say L(x, y)2, where L(x, y) is linear in x and y, and
  2. L(x, y) does not divide the cubic terms in the Taylor series of f(x, y).

Ordinary cusps are very important geometrical objects. It can be shown that caustic in the plane generically comprise smooth points and ordinary cusp points. By generic we mean that an open and dense set of all caustics comprise smooth points and ordinary cusp points. Caustics are, informally, points of exceptional brightness caused by the reflection of light from some object. In the teacup picture light is bouncing off the side of the teacup and interacting in a non-parallel fashion with itself. This results in a caustic. The bottom of the teacup represents a two-dimensional cross section of this caustic.

The ordinary cusp is also important in wavefronts. A wavefront can be shown to generically comprise smooth points and ordinary cusp points. By generic we mean that an open and dense set of all wavefronts comprise smooth points and ordinary cusp points.
  • A rhamphoid cusp (coming from the Greek meaning beak-like) is given by x2 – y5 = 0, i.e. the zero-level-set of a type A4-singularity. These cusps are non-generic as caustics and wavefronts. The rhamphoid cusp and the ordinary cusp are non-diffeomorphic.

For a type A4-singularity we need f to have a degenerate quadratic part (this gives type A≥2), that L does divide the cubic terms (this gives type A≥3), another divisibility condition (giving type A≥4), and a final non-divisibility condition (giving type exactly A4).

To see where these extra divisibility conditions come from, assume that f has a degenerate quadratic part L2 and that L divides the cubic terms. It follows that the third order taylor series of f is given by L2 ± LQ where Q is quadratic in x and y. We can complete the square to show that L2 ± LQ = (L ± ½Q)2 – ¼Q4. We can now make a diffeomorphic change of variable (in this case we simply substitute polynomials with linearly independent linear parts) so that (L ± ½Q)2 − ¼Q4 → x12 + P1 where P1 is quartic (order four) in x1 and y1. The divisibility condition for type A≥4 is that x1 divides P1. If x1 does not divide P1 then we have type exactly A3 (the zero-level-set here is a tacnode). If x1 divides P1 we complete the square on x12 + P1 and change coordinates so that we have x22 + P2 where P2 is quintic (order five) in x2 and y2. If x2 does not divide P2 then we have exactly type A4, i.e. the zero-level-set will be a rhamphoid cusp.

Read more about this topic:  Cusp (singularity)

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)