Curry's Paradox - Naive Set Theory

Naive Set Theory

Even if the underlying mathematical logic does not admit any self-referential sentence, in set theories which allow unrestricted comprehension, we can nevertheless prove any logical statement Y by examining the set

The proof proceeds as follows:

  1. Definition of X
  2. from 1
  3. from 2, contraction
  4. from 1
  5. from 3 and 4, modus ponens
  6. from 3 and 5, modus ponens

Therefore, in a consistent set theory, the set does not exist for false Y. This can be seen as a variant on Russell's paradox, but is not identical. Some proposals for set theory have attempted to deal with Russell's paradox not by restricting the rule of comprehension, but by restricting the rules of logic so that it tolerates the contradictory nature of the set of all sets that are not members of themselves. The existence of proofs like the one above shows that such a task is not so simple, because at least one of the deduction rules used in the proof above must be omitted or restricted.

Read more about this topic:  Curry's Paradox

Famous quotes containing the words naive, set and/or theory:

    It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.
    Jimmy Carter (James Earl Carter, Jr.)

    And the sentinel stars set their watch in the sky;
    Thomas Campbell (1774–1844)

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)