In the mathematical subfield of numerical analysis a **cubic Hermite spline** (also called **cspline**), named after Charles Hermite, is a third-degree spline with each polynomial of the spline in Hermite form. The Hermite form consists of two control points and two control tangents for each polynomial.

For interpolation on a grid with points for, interpolation is performed on one subinterval at a time (given that tangent values are predetermined). The subinterval is normalized to via .

Read more about Cubic Hermite Spline: Interpolating A Data Set, Interpolation On The Unit Interval Without Exact Derivatives

### Famous quotes containing the word cubic:

“One of the great natural phenomena is the way in which a tube of toothpaste suddenly empties itself when it hears that you are planning a trip, so that when you come to pack it is just a twisted shell of its former self, with not even a *cubic* millimeter left to be squeezed out.”

—Robert Benchley (1889–1945)