Mathematical Details
The operators derived above are actually a specific instance of a more generalized class of creation and annihilation operators. The more abstract form of the operators satisfy the properties below.
Let H be the one-particle Hilbert space. To get the bosonic CCR algebra, look at the algebra generated by a(f) for any f in H. The operator a(f) is called an annihilation operator and the map a(.) is antilinear. Its adjoint is a†(f) which is linear in H.
For a boson,
- ,
where we are using bra-ket notation.
For a fermion, the anticommutators are
- .
A CAR algebra.
Physically speaking, a(f) removes (i.e. annihilates) a particle in the state | f whereas a†(f) creates a particle in the state | f .
The free field vacuum state is the state with no particles. In other words,
where | 0 is the vacuum state.
If | f is normalized so that f | f = 1, then a†(f) a(f) gives the number of particles in the state | f .
Read more about this topic: Creation And Annihilation Operators
Famous quotes containing the words mathematical and/or details:
“An accurate charting of the American womans progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of timebut like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.”
—Susan Faludi (20th century)
“There was a time when the average reader read a novel simply for the moral he could get out of it, and however naïve that may have been, it was a good deal less naïve than some of the limited objectives he has now. Today novels are considered to be entirely concerned with the social or economic or psychological forces that they will by necessity exhibit, or with those details of daily life that are for the good novelist only means to some deeper end.”
—Flannery OConnor (19251964)