# Crank (mechanism) - Mechanics

Mechanics

The displacement of the end of the connecting rod is approximately proportional to the cosine of the angle of rotation of the crank, when it is measured from top dead center (TDC). So the reciprocating motion created by a steadily rotating crank and connecting rod is approximately simple harmonic motion:

where x is the distance of the end of the connecting rod from the crank axle, l is the length of the connecting rod, r is the length of the crank, and α is the angle of the crank measured from top dead center (TDC). Technically, the reciprocating motion of the connecting rod departs slightly from sinusoidal motion due to the changing angle of the connecting rod during the cycle. This difference becomes significant in high-speed engines, which may need balance shafts to reduce the vibration due to this "secondary harmonic imbalance".

The mechanical advantage of a crank, the ratio between the force on the connecting rod and the torque on the shaft, varies throughout the crank's cycle. The relationship between the two is approximately:

where is the torque and F is the force on the connecting rod. For a given force on the crank, the torque is maximum at crank angles of α = 90° or 270° from TDC. When the crank is driven by the connecting rod, a problem arises when the crank is at top dead centre (0°) or bottom dead centre (180°). At these points in the crank's cycle, a force on the connecting rod causes no torque on the crank. Therefore if the crank is stationary and happens to be at one of these two points, it cannot be started moving by the connecting rod. For this reason, in steam locomotives, whose wheels are driven by cranks, the two connecting rods are attached to the wheels at points 90° apart, so that regardless of the position of the wheels when the engine starts, at least one connecting rod will be able to exert torque to start the train.