Coxeter Element - Coxeter Plane

For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h. This is called the Coxeter plane and is the plane on which P has eigenvalues ei/h and e−2πi/h = ei(h−1)/h. This plane was first systematically studied in (Coxeter 1948), and subsequently used in (Steinberg 1959) to provide uniform proofs about properties of Coxeter elements.

The Coxeter plane is often used to draw diagrams of higher-dimensional polytopes and root systems – the vertices and edges of the polytope, or roots (and some edges connecting these) are orthogonally projected onto the Coxeter plane, yielding a Petrie polygon with h-fold rotational symmetry. For root systems, no root maps to zero, corresponding to the Coxeter element not fixing any root or rather axis (not having eigenvalue 1 or −1), so the projections of orbits under w form h-fold circular arrangements and there is an empty center, as in the E8 diagram at above right. For polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids.

  • Petrie polygons of the Platonic solids, showing 4-fold, 6-fold, and 10-fold symmetry, corresponding to the Coxeter lengths of A3, BC3, and H3.

Read more about this topic:  Coxeter Element

Famous quotes containing the word plane:

    Have you ever been up in your plane at night, alone, somewhere, 20,000 feet above the ocean?... Did you ever hear music up there?... It’s the music a man’s spirit sings to his heart, when the earth’s far away and there isn’t any more fear. It’s the high, fine, beautiful sound of an earth-bound creature who grew wings and flew up high and looked straight into the face of the future. And caught, just for an instant, the unbelievable vision of a free man in a free world.
    Dalton Trumbo (1905–1976)