Formal Definition
Let X be a topological space. A covering space of X is a space C together with a continuous surjective map
such that for every x ∈ X, there exists an open neighborhood U of x, such that p−1(U) (the inverse image of U under p) is a disjoint union of open sets in C, each of which is mapped homeomorphically onto U by p.
The map p is called the covering map, the space X is often called the base space of the covering, and the space C is called the total space of the covering. For any point x in the base the inverse image of x in C is necessarily a discrete space called the fiber over x.
The special open neighborhoods U of x given in the definition are called evenly-covered neighborhoods. The evenly-covered neighborhoods form an open cover of the space X. The homeomorphic copies in C of an evenly-covered neighborhood U are called the sheets over U. One generally pictures C as "hovering above" X, with p mapping "downwards", the sheets over U being horizontally stacked above each other and above U, and the fiber over x consisting of those points of C that lie "vertically above" x. In particular, covering maps are locally trivial. This means that locally, each covering map is 'isomorphic' to a projection in the sense that there is a homeomorphism from the pre-image of an evenly covered neighbourhood U, to U X F, where F is the fiber, satisfying the local trivialization condition. That is, if we project this homeomorphism onto U (and thus the composition of the projection with this homeomorphism will be a map from the pre-image of U to U), the derived composition will equal p.
Read more about this topic: Covering Space
Famous quotes containing the words formal and/or definition:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)