Covering Graph - Universal Cover

Universal Cover

For any connected graph G, it is possible to construct its universal covering graph. This is an instance of the more general universal cover concept from topology; the topological requirement that a universal cover be simply connected translates in graph-theoretic terms to a requirement that it be acyclic and connected; that is, a tree. The universal covering graph is unique (up to isomorphism). If G is a tree, then G itself is the universal covering graph of G. For any other finite connected graph G, the universal covering graph of G is a countably infinite (but locally finite) tree.

The universal covering graph T of a connected graph G can be constructed as follows. Choose an arbitrary vertex r of G as a starting point. Each vertex of T is a non-backtracking walk that begins from r, that is, a sequence w = (r, v1, v2, ..., vn) of vertices of G such that

  • vi and vi+1 are adjacent in G for all i, i.e., w is a walk
  • vi-1vi+1 for all i, i.e., w is non-backtracking.

Then, two vertices of T are adjacent if one is a simple extension of another: the vertex (r, v1, v2, ..., vn) is adjacent to the vertex (r, v1, v2, ..., vn-1). Up to isomorphism, the same tree T is constructed regardless of the choice of the starting point r.

The covering map f maps the vertex (r) in T to the vertex r in G, and a vertex (r, v1, v2, ..., vn) in T to the vertex vn in G.

Read more about this topic:  Covering Graph

Famous quotes containing the words universal and/or cover:

    I have all my life been on my guard against the information conveyed by the sense of hearing—it being one of my earliest observations, the universal inclination of humankind is to be led by the ears, and I am sometimes apt to imagine that they are given to men as they are to pitchers, purposely that they may be carried about by them.
    Mary Wortley, Lady Montagu (1689–1762)

    Many count on their disadvantages to cover for them.
    Mason Cooley (b. 1927)