Covariant Derivative - Relation To Lie Derivative

Relation To Lie Derivative

A covariant derivative introduces an extra geometric structure on a manifold which allows vectors in neighboring tangent spaces to be compared. This extra structure is necessary because there is no canonical way to compare vectors from different vector spaces, as is necessary for this generalization of the directional derivative. There is however another generalization of directional derivatives which is canonical: the Lie derivative. The Lie derivative evaluates the change of one vector field along the flow of another vector field. Thus, one must know both vector fields in an open neighborhood. The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in an open neighborhood of a point. In other words, the covariant derivative is linear (over C∞(M)) in the direction argument, while the Lie derivative is linear in neither argument.

Note that the antisymmetrized covariant derivative ∇uv − ∇vu, and the Lie derivative Luv differ by the torsion of the connection, so that if a connection is symmetric, then its antisymmetrization is the Lie derivative.

Read more about this topic:  Covariant Derivative

Famous quotes containing the words relation to, relation, lie and/or derivative:

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Away before me to sweet beds of flowers.
    Love-thoughts lie rich when canopied with bowers.
    William Shakespeare (1564–1616)

    Poor John Field!—I trust he does not read this, unless he will improve by it,—thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adam’s grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.
    Henry David Thoreau (1817–1862)