Covariant Derivative - Derivative Along Curve

Derivative Along Curve

Since the covariant derivative of a tensor field at a point depends only on value of the vector field at one can define the covariant derivative along a smooth curve in a manifold:

Note that the tensor field only needs to be defined on the curve for this definition to make sense.

In particular, is a vector field along the curve itself. If vanishes then the curve is called a geodesic of the covariant derivative. If the covariant derivative is the Levi-Civita connection of a certain metric then the geodesics for the connection are precisely the geodesics of the metric that are parametrised by arc length.

The derivative along a curve is also used to define the parallel transport along the curve.

Sometimes the covariant derivative along a curve is called absolute or intrinsic derivative.

Read more about this topic:  Covariant Derivative

Famous quotes containing the words derivative and/or curve:

    When we say “science” we can either mean any manipulation of the inventive and organizing power of the human intellect: or we can mean such an extremely different thing as the religion of science the vulgarized derivative from this pure activity manipulated by a sort of priestcraft into a great religious and political weapon.
    Wyndham Lewis (1882–1957)

    In philosophical inquiry, the human spirit, imitating the movement of the stars, must follow a curve which brings it back to its point of departure. To conclude is to close a circle.
    Charles Baudelaire (1821–1867)