Beta Functions
In quantum field theory, a beta function β(g) encodes the running of a coupling parameter, g. It is defined by the relation:
where μ is the energy scale of the given physical process. If the beta functions of a quantum field theory vanish, then the theory is scale-invariant.
The coupling parameters of a quantum field theory can flow even if the corresponding classical field theory is scale-invariant. In this case, the non-zero beta function tells us that the classical scale-invariance is anomalous.
Read more about this topic: Coupling Constant
Famous quotes containing the word functions:
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)