Coordination Number

In chemistry and crystallography, the coordination number of a central atom in a molecule or crystal is the number of its nearest neighbours. This number is determined somewhat differently for molecules than for crystals.

In chemistry, the emphasis is on bonding structure in molecules or ions and the coordination number of an atom is determined by simply counting the other atoms to which it is bonded (by either single or multiple bonds). For example, 1- has Cr3+ as its central cation, which has a coordination number of 6.

However the solid-state structures of crystals often have less clearly defined bonds, so a simpler model is used, in which the atoms are represented by touching spheres. In this model the coordination number of an atom is the number of other atoms that it touches. For an atom in the interior of a crystal lattice, the number of atoms touching the given atom is the bulk coordination number; for an atom at a surface of a crystal, this is the surface coordination number.

Read more about Coordination Number:  Chemistry Usage, Crystallography Usage, Usage in Quasicrystal, Liquid and Other Disordered Systems

Famous quotes containing the word number:

    Take away from the courts, if it could be taken away, the power to issue injunctions in labor disputes, and it would create a privileged class among the laborers and save the lawless among their number from a most needful remedy available to all men for the protection of their business interests against unlawful invasion.... The secondary boycott is an instrument of tyranny, and ought not to be made legitimate.
    William Howard Taft (1857–1930)