Uniform Convergence
Suppose, and has modulus of continuity (we assume here that is also non decreasing), then the partial sum of the Fourier series converges to the function with the following speed
- (It would be nice if the author can give the proof or cite it)
for a constant that does not depend upon, nor, nor .
This theorem, first proved by D Jackson, tells, for example, that if satisfies the -Hölder condition, then
If is periodic and absolutely continuous on, then the Fourier series of converges uniformly, but not necessarily absolutely, to, see p. 519 Exercise 6 (d) and p. 520 Exercise 7 (c), Introduction to classical real analysis, by Karl R. Stromberg, 1981.
Read more about this topic: Convergence Of Fourier Series
Famous quotes containing the word uniform:
“When a uniform exercise of kindness to prisoners on our part has been returned by as uniform severity on the part of our enemies, you must excuse me for saying it is high time, by other lessons, to teach respect to the dictates of humanity; in such a case, retaliation becomes an act of benevolence.”
—Thomas Jefferson (17431826)