Convergence in Measure - Properties

Properties

Throughout, f and fn (n N) are measurable functions XR.

  • Global convergence in measure implies local convergence in measure. The converse, however, is false; i.e., local convergence in measure is strictly weaker than global convergence in measure, in general.
  • If, however, or, more generally, if all the fn vanish outside some set of finite measure, then the distinction between local and global convergence in measure disappears.
  • If μ is σ-finite and (fn) converges (locally or globally) to f in measure, there is a subsequence converging to f almost everywhere. The assumption of σ-finiteness is not necessary in the case of global convergence in measure.
  • If μ is σ-finite, (fn) converges to f locally in measure if and only if every subsequence has in turn a subsequence that converges to f almost everywhere.
  • In particular, if (fn) converges to f almost everywhere, then (fn) converges to f locally in measure. The converse is false.
  • Fatou's lemma and the monotone convergence theorem hold if almost everywhere convergence is replaced by (local or global) convergence in measure.
  • If μ is σ-finite, Lebesgue's dominated convergence theorem also holds if almost everywhere convergence is replaced by (local or global) convergence in measure.
  • If X = ⊆ R and μ is Lebesgue measure, there are sequences (gn) of step functions and (hn) of continuous functions converging globally in measure to f.
  • If f and fn (nN) are in Lp(μ) for some p > 0 and (fn) converges to f in the p-norm, then (fn) converges to f globally in measure. The converse is false.
  • If fn converges to f in measure and gn converges to g in measure then fn + gn converges to f + g in measure. Additionally, if the measure space is finite, fngn also converges to fg.

Read more about this topic:  Convergence In Measure

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)