Counterexamples
Let, μ be Lebesgue measure, and f the constant function with value zero.
- The sequence converges to f locally in measure, but does not converge to f globally in measure.
- The sequence where and
(The first five terms of which are ) converges to f locally in measure; but for no x does fn(x) converge to zero. Hence (fn) fails to converge to f almost everywhere.
- The sequence converges to f almost everywhere (hence also locally in measure), but not in the p-norm for any .
Read more about this topic: Convergence In Measure