Continuous Linear Extension
In functional analysis, it is often convenient to define a linear transformation on a complete, normed vector space by first defining a linear transformation on a dense subset of and then extending to the whole space via the theorem below. The resulting extension remains linear and bounded (thus continuous).
This procedure is known as continuous linear extension.
Read more about Continuous Linear Extension: Theorem, Application, The Hahn–Banach Theorem
Famous quotes containing the words continuous and/or extension:
“For Lawrence, existence was one continuous convalescence; it was as though he were newly reborn from a mortal illness every day of his life. What these convalescent eyes saw, his most casual speech would reveal.”
—Aldous Huxley (18941963)
“Tis the perception of the beautiful,
A fine extension of the faculties,
Platonic, universal, wonderful,
Drawn from the stars, and filtered through the skies,
Without which life would be extremely dull.”
—George Gordon Noel Byron (17881824)