Compass and Straightedge Constructions
Compass and straightedge constructions are known for all constructible polygons. If n = p·q with p = 2 or p and q coprime, an n-gon can be constructed from a p-gon and a q-gon.
- If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed.
- If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a vertex. Because p and q are relatively prime, there exists integers a,b such that ap + bq = 1. Then 2aπ/q + 2bπ/p = 2π/pq. From this, a p·q-gon can be constructed.
Thus one only has to find a compass and straightedge construction for n-gons where n is a Fermat prime.
- The construction for an equilateral triangle is simple and has been known since Antiquity. See equilateral triangle.
- Constructions for the regular pentagon were described both by Euclid (Elements, ca 300 BC), and by Ptolemy (Almagest, ca AD 150). See pentagon.
- Although Gauss proved that the regular 17-gon is constructible, he did not actually show how to do it. The first construction is due to Erchinger, a few years after Gauss' work. See heptadecagon.
- The first explicit construction of a regular 257-gon was given by Friedrich Julius Richelot (1832).
- A construction for a regular 65537-gon was first given by Johann Gustav Hermes (1894). The construction is very complex; Hermes spent 10 years completing the 200-page manuscript. (Conway has cast doubt on the validity of Hermes' construction, however.)
Read more about this topic: Constructible Polygon
Famous quotes containing the word compass:
“To give style to ones charactera rare and noble art! Those practice it who compass all that their natures present as strengths and weaknesses and then fit them into an artistic plan until every one appears as art and reason and even weakness enchants the eye.”
—Friedrich Nietzsche (18441900)