Consistent Heuristic - Consequences of Monotonicity

Consequences of Monotonicity

Consistent heuristics are called monotone because the estimated final cost of a partial solution, is monotonically non-decreasing along the best path to the goal, where is the cost of the best path from start node to . It's necessary and sufficient for a heuristic to obey the triangle inequality in order to be consistent.

In the A* search algorithm, using a consistent heuristic means that once a node is expanded, the cost by which it was reached is the lowest possible, under the same conditions that Dijkstra's algorithm requires in solving the shortest path problem (no negative cost cycles). In fact, if the search graph is given cost for a consistent, then A* is equivalent to best-first search on that graph using Dijkstra's algorithm. In the unusual event that an admissible heuristic is not consistent, a node will need repeated expansion every time a new best (so-far) cost is achieved for it.

Read more about this topic:  Consistent Heuristic

Famous quotes containing the words consequences of and/or consequences:

    There is a delicate balance of putting yourself last and not being a doormat and thinking of yourself first and not coming off as selfish, arrogant, or bossy. We spend the majority of our lives attempting to perfect this balance. When we are successful, we have many close, healthy relationships. When we are unsuccessful, we suffer the natural consequences of damaged and sometimes broken relationships. Children are just beginning their journey on this important life lesson.
    —Cindy L. Teachey. “Building Lifelong Relationships—School Age Programs at Work,” Child Care Exchange (January 1994)

    The medium is the message. This is merely to say that the personal and social consequences of any medium—that is, of any extension of ourselves—result from the new scale that is introduced into our affairs by each extension of ourselves, or by any new technology.
    Marshall McLuhan (1911–1980)