Connections On Frame Bundles and Torsion
If the principal bundle P is the frame bundle, or (more generally) if it has a solder form, then the connection is an example of an affine connection, and the curvature is not the only invariant, since the additional structure of the solder form θ, which is an equivariant Rn-valued 1-form on P, should be taken into account. In particular, the torsion form on P, is an Rn-valued 2-form Θ defined by
Θ is G-equivariant and horizontal, and so it descends to a tangent-valued 2-form on M, called the torsion. This equation is sometimes called the first structure equation.
Read more about this topic: Connection (principal Bundle)
Famous quotes containing the words connections, frame and/or bundles:
“... feminism is a political term and it must be recognized as such: it is political in womens terms. What are these terms? Essentially it means making connections: between personal power and economic power, between domestic oppression and labor exploitation, between plants and chemicals, feelings and theories; it means making connections between our inside worlds and the outside world.”
—Anica Vesel Mander, U.S. author and feminist, and Anne Kent Rush (b. 1945)
“Human life itself may be almost pure chaos, but the work of the artistthe only thing hes good foris to take these handfuls of confusion and disparate things, things that seem to be irreconcilable, and put them together in a frame to give them some kind of shape and meaning. Even if its only his view of a meaning. Thats what hes forto give his view of life.”
—Katherine Anne Porter (18901980)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)