Connections On Frame Bundles and Torsion
If the principal bundle P is the frame bundle, or (more generally) if it has a solder form, then the connection is an example of an affine connection, and the curvature is not the only invariant, since the additional structure of the solder form θ, which is an equivariant Rn-valued 1-form on P, should be taken into account. In particular, the torsion form on P, is an Rn-valued 2-form Θ defined by
Θ is G-equivariant and horizontal, and so it descends to a tangent-valued 2-form on M, called the torsion. This equation is sometimes called the first structure equation.
Read more about this topic: Connection (principal Bundle)
Famous quotes containing the words connections, frame and/or bundles:
“A foreign minister, I will maintain it, can never be a good man of business if he is not an agreeable man of pleasure too. Half his business is done by the help of his pleasures: his views are carried on, and perhaps best, and most unsuspectedly, at balls, suppers, assemblies, and parties of pleasure; by intrigues with women, and connections insensibly formed with men, at those unguarded hours of amusement.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“He drew the curse upon the world, and cracked
The whole frame with his fall.
This made him long for home, as loth to stay
With murmurers and foes;”
—Henry Vaughan (16221695)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)