Connected Space - Formal Definition

Formal Definition

A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.

For a topological space X the following conditions are equivalent:

  1. X is connected.
  2. X cannot be divided into two disjoint nonempty closed sets.
  3. The only subsets of X which are both open and closed (clopen sets) are X and the empty set.
  4. The only subsets of X with empty boundary are X and the empty set.
  5. X cannot be written as the union of two nonempty separated sets.
  6. The only continuous functions from X to {0,1} are constant.

Read more about this topic:  Connected Space

Famous quotes containing the words formal and/or definition:

    On every formal visit a child ought to be of the party, by way of provision for discourse.
    Jane Austen (1775–1817)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)