Connected Space - Formal Definition

Formal Definition

A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.

For a topological space X the following conditions are equivalent:

  1. X is connected.
  2. X cannot be divided into two disjoint nonempty closed sets.
  3. The only subsets of X which are both open and closed (clopen sets) are X and the empty set.
  4. The only subsets of X with empty boundary are X and the empty set.
  5. X cannot be written as the union of two nonempty separated sets.
  6. The only continuous functions from X to {0,1} are constant.

Read more about this topic:  Connected Space

Famous quotes containing the words formal and/or definition:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)