Conjunctive Normal Form

Conjunctive Normal Form

In Boolean logic, a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, where a clause is a disjunction of literals. As a normal form, it is useful in automated theorem proving. It is similar to the product of sums form used in circuit theory.

All conjunctions of literals and all disjunctions of literals are in CNF, as they can be seen as conjunctions of one-literal clauses and conjunctions of a single clause, respectively. As in the disjunctive normal form (DNF), the only propositional connectives a formula in CNF can contain are and, or, and not. The not operator can only be used as part of a literal, which means that it can only precede a propositional variable.

Read more about Conjunctive Normal Form:  Examples and Counterexamples, Conversion Into CNF, First-order Logic, Computational Complexity, Converting From First-order Logic

Famous quotes containing the words normal and/or form:

    A normal adolescent is so restless and twitchy and awkward that he can mange to injure his knee—not playing soccer, not playing football—but by falling off his chair in the middle of French class.
    Judith Viorst (20th century)

    Upon the whole, necessity is something, that exists in the mind, not in objects; nor is it possible for us ever to form the most distant idea of it, consider’d as a quality in bodies. Either we have no idea of necessity, or necessity is nothing but that determination of thought to pass from cause to effects and effects to causes, according to their experienc’d union.
    David Hume (1711–1776)