The Conjugate Gradient Method As A Direct Method
We say that two non-zero vectors u and v are conjugate (with respect to A) if
Since A is symmetric and positive definite, the left-hand side defines an inner product
Two vectors are conjugate if they are orthogonal with respect to this inner product. Being conjugate is a symmetric relation: if u is conjugate to v, then v is conjugate to u. (Note: This notion of conjugate is not related to the notion of complex conjugate.)
Suppose that {pk} is a sequence of n mutually conjugate directions. Then the pk form a basis of Rn, so we can expand the solution of Ax = b in this basis:
and we see that
The coefficients are given by
(because are mutually conjugate)
This result is perhaps most transparent by considering the inner product defined above.
This gives the following method for solving the equation Ax = b: find a sequence of n conjugate directions, and then compute the coefficients .
Read more about this topic: Conjugate Gradient Method
Famous quotes containing the words method and/or direct:
“The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.”
—Isaiah Berlin (b. 1909)
“Parliament must not be told a direct untruth, but its quite possible to allow them to mislead themselves.”
—Norman Tebbit (b. 1931)