Conjugacy Class - Conjugacy As Group Action

Conjugacy As Group Action

If we define

g . x = gxg−1

for any two elements g and x in G, then we have a group action of G on G. The orbits of this action are the conjugacy classes, and the stabilizer of a given element is the element's centralizer.

Similarly, we can define a group action of G on the set of all subsets of G, by writing

g . S = gSg−1,

or on the set of the subgroups of G.

Read more about this topic:  Conjugacy Class

Famous quotes containing the words group and/or action:

    Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.
    Jean Dubuffet (1901–1985)

    The greatest pleasure I know, is to do a good action by stealth, and to have it found out by accident.
    Charles Lamb (1775–1834)