Conical Scanning - Conical Scanning

Conical Scanning

Conical scanning addresses this problem by "moving" the radar beam slightly off center from the antenna's midline, and then rotating it. Given an example antenna that generates a beam of 2 degrees width – fairly typical – a conical scanning radar might move the beam 1.5 degrees to one side of the centerline by offsetting the feed slightly. The resulting pattern, at any one instant in time, covers the midline of the antenna for about 0.5 degrees, and 1.5 degrees to the side. By spinning the feed horn with a motor, the pattern becomes a cone centered on the midline, extending 3 degrees to the sides in our example.

The key concept is that a target located at the midline point will generate a constant return no matter where the lobe is currently pointed, whereas if it is to one side it will generate a strong return when the lobe is pointed in that general direction and a weak one when pointing away. Additionally the portion covering the centerline is near the edge of the radar lobe, where sensitivity is falling off rapidly. An aircraft centered in the beam is in the area where even small motions will result in a noticeable change in return, growing much stronger along the direction the radar needs to move. The antenna control system is arranged to move the antenna in azimuth and elevation such that a constant return is obtained from the aircraft being tracked. Whilst use of the lobe alone might allow an operator to "hunt" for the strongest return and thus aim the antenna within a degree or so in that "maximum return" area at the center of the lobe, with conical scanning much smaller movements can be detected, and accuracies under 0.1 degree are possible.

Read more about this topic:  Conical Scanning